
Red Eye Removal using
Digital Color Image Processing

Jon Y. Hardeberg
Conexant Systems, Inc., Redmond, Washington

Abstract

The current paper provides methods to correct the artifact
known as “red eye” by means of digital color image
processing. This artifact is typically formed in amateur
photographs taken with a built-in camera flash.

To correct red eye artifacts, an image mask is computed
by calculating a colorimetric distance between a proto-
typical reference “red eye” color and each pixel of the
image containing the red eye. Various image processing
algorithms such as thresholding, blob analysis, and morpho-
logical filtering, are applied to the mask, in order to elimi-
nate noise, reduce errors, and facilitate a more natural
looking result. The mask serves to identify pixels in the
color image needing correction, and further serves to
identify the amount of correction needed. Pixels identified
as having red-eye artifacts are modified to a substantially
monochrome color, while the bright specular reflection of
the eye is preserved.

Introduction

The effect of “red eyes” is a well-known problem in
photography. Otherwise good flash photographs are often
completely unacceptable because of that glowing red color
that often appears in the eyes of people photographed with
flash bulbs. Red eyes are caused by light entering the
subject’s eye through the pupil and reflecting from the
retina. The light is usually coming from the flash used when
taking the photograph. The reflection is red roughly because
the blood in the retina absorbs all colors of the visible
spectrum except red, see Figure 1.

Several attempts have been made to reduce this
problem at the time the photograph is taken. Two main
techniques are used: increasing the distance between the
flash and the camera objective, and using one or several
“pre-flashes” to reduce the size of the subject’s pupils.
Despite these efforts, “red eyes” are still, and will likely
continue to be, a huge problem in amateur photography.

With the advent of digital imaging technology, new
possibilities arise for solving this problem. By applying an
innovative combination of color image processing algo-
rithms, we wish to touch-up such photographs by replacing
the unwanted red colors by dark neutral hues, in a manner
that is simple to the user, and that results in an image that
looks natural.

Several commercial imaging software packages
propose the function of red eye removal in different forms
and with different degrees of success. Examples of these
include Microfrontier’s Digital Darkroom (http://www.
microfrontier.com/products/digital_darkroom10/resr.html),
Photodex’s CompuPic (http://www.photodex.com/products/
cpic/photo.html#red-eye), Microsoft’s PhotoDraw (http://ms
press.microsoft.com/prod/books/sampchap/2316.htm#101),
and Picture It! (http://www.home-publishing.com/PictureIt/
default.asp), Adobe PhotoDeluxe (http://www.adobe.com),
and Corel’s CorelScan (http://www.corel.com).

These manufacturers have to our knowledge not
published their algorithms. There is indeed little published
material on this subject. The only reference that has come to
our attention is a conference presentation1 given in 1996 by
researchers at the University of Toronto. Unfortunately, this
abstract seems not to appear in the printed conference
proceedings, and to date, we have not been able to consult
this publication.

In this paper, we present our approach to this problem
in the context of developing a function of a consumer
imaging software application, the Photo Center, a compo-
nent of Conexant’s InternetDesktop software.2 We present
several aspects of the design process, such as the choice of a
user interaction model and the development of the image
processing algorithms.

General Methodology

In this section we first discuss what a “red eye” looks like,
and how we would want it to look. Then we examine the
question of how the user should interact with the software in
order to touch up images, and finally we discuss some
considerations related to color space.

Characteristic Features
The actual shape and color of a red eye vary a lot from

image to image. The pupil may appear in different shades of
red, depending on factors such as flash power, exposure
time, camera sensitivities, and if conventional analog photo-
graphy is used, film and paper type, photographic
development process, and finally the digital scanning
process including any digital color correction.

The shape of the red pupil is usually almost circular,
but also here many variations are found, depending on
factors such as image resolution, eye and eyebrow position,
focus, and imaging geometry.

IS&T's 2001 PICS Conference Proceedings

283

Figure 1. The "Red Eye" effect is caused by incident light, typically from a flash, being reflected from the retina back to the camera.

Another important characteristic feature is the bright
specular highlight, the so-called “catch light” which occur
as the flashlight is reflected at the surface of the eye.

See Figure 2 for a few examples of details of
photographs with red eye artifacts.3

Figure 2. The color, size, and shape of red eyes are very image-
dependent.3

Desired Appearance
In order to develop efficient algorithms to correct the

red eye artifact, it is important to specify the desired
appearance of the corrected image. We mention here some
key features.

The corrected pupil should be essentially black. A com-
mon misconception is that the target color depends on the
eye (iris) color of the person, this is obviously not the case.

If there is a specular highlight in the eye, a catch light,
it is very important not to remove or significantly alter it.
Catch lights represent an essential part of a good portrait,
because they give the eyes a life-like quality and project the
subject’s expression and personality.4

A general goal is that the corrected image should look
completely natural, one particular challenge to achieving
this is to avoid visible boundaries between the corrected and
non-corrected areas of the image.

Another important design goal is that elements of the
image which is not a red eye artifact should not be affected.
It is not acceptable to remove a bathing suit’s red polka
dots…

User Interface Model
We have identified four different possible user interface

models:
1. Manual selection of the red pupil area, typically using

tools such as “magic wand”, “lasso”, or “ellipse.” This
model is used e.g. in CorelScan and Microfrontier;s
Digital Darkroom

2. Sweeping / brushing red areas. to neutralize red hues.
This model is used in Photodex’s CompuPic

3. Selecting a Region of Interest (ROI) rectangle around
the red eye(s). This approach is used e.g. by Adobe
PhotoDeluxe.

4. Completely automatic. If there are red eyes in the
photo, they will be automatically corrected. We have
not found any existing software using this model.

Although the fourth model would be extremely
desirable from a user standpoint (if it’s guaranteed never to
fail), we have chosen model #3. The ROI model represents
a reasonable tradeoff between algorithm complexity and
user interaction. Figure 3 shows our implementation of a
user interface using this model.

Color Space Considerations
As we describe in the following sections, important

parts of the proposed image processing algorithm is
performed using the CIELAB color space,2 in particular
because of its convenient ability to quantify color in terms
of its perceptual attributes – lightness, chroma, and hue. For
the understanding of this paper, basic familiarity with the
CIELAB color space should be sufficient, in particular that
a color is quantified by three values, the lightness L* and
the chromaticity coordinates a* and b*. More information
about this color space can be found in any good book on
color imaging and color management.6, 7

However, it is not common that the colors of an image
are quantified using this device-independent color space.
More typically the colors are quantified in an uncalibrated
device-dependent RGB color space, and an exact formula
for the colorspace conversion to CIELAB does not exist.
Our approach to this problem is to assume that the images
are quantified in a standardized RGB space, namely the
sRGB color space8, and use the known formulae to convert
between sRGB and CIELAB. More and more imaging
devices use the sRGB color space for unambiguous
communication of color.9

IS&T's 2001 PICS Conference Proceedings

284

Figure 3. Example of the Red Eye Removal user interface used in
our Photo Center software application.2, 3 First, the Red Eye
Removal function is chosen from the TouchUp menu, then the ROI
is selected. A new window pops up showing a preview of the
correction, and allowing for some parameter modification, in
order to achieve the desired results.

Color Image Processing

At this point we suppose that the user has selected a Region
of Interest (ROI), that is, a rectangle that contains the red
eye to be corrected. Our problem is then to get from this
image down to the actual pixels that should be modified,
and to decide how these pixels should be modified. Because
of the variations of color, size, and shape of the red eye
artifact, this is not a trivial task.

The main idea of our approach is to use a fuzzy mask.
The mask serves to identify precisely the pixels in the ROI
needing correction, and further to identify the amount of
correction needed in these pixels.

Our proposed color image processing algorithm method
can be broken down into four steps. First, an initial mask is
computed over the ROI. Then, this mask is binarized by a
thresholding operation. In the third step, the mask is
adjusted to fit more closely the actual location of the red
eye, by a combination of several image processing
techniques. The last step is to apply the actual correction to
the areas of the ROI where the mask value is nonzero.

These four stages are described in more detail in the
following subsections.

Initial Mask Computation
The first step of our algorithm is to compute a 8-bit

“redness mask” over the ROI, as illustrated by Figure 4.
For each pixel of the ROI a color difference between

the actual pixel color i(i,j) and a predefined “typical red eye
color” iTypicalRedEye is calculated. This distance is then
normalized such that the mask value m(i,j) is white where
the color is most likely to be a red eye, black where this is
least likely, and different shades of gray in between. This
computation can be expressed as follows:

)(EyeTypicalRedii(i,j),dx(i,j) = (1)

,
minmax

max
255round

(x)(x)-

(x)-x(i,j)
m(i,j) 





⋅= (2)

where d() is a function quantifying the color difference
between two pixels. We have evaluated several possibilities
for this color difference calculation, including simple
Euclidean distance in RGB color space, and CIE ∆Eab. The
formula that turned out to give the best results was the
chromaticity difference in CIELAB space, that is,

d(i2, i1) = [(a*

2 – a*

1)
2 + (b*

2 – b*

1)
2]1/2 (3)

As shown above, the difference in luminance L* of the
pixel in question and that of the reference color are not
factored into the color difference equation. Factoring out the
luminance appears to have some advantage over calculating
the three-dimensional Euclidean distance between the
reference color and the color image points, because the
luminance of a red-eye artifact typically varies depending
on the proximity and intensity of the flash.

Figure 4. Initial mask computation. The light gray areas identify
colors that are likely to be red-eye colors.

Mask Binarization
In the second step, the mask is binarized by a

thresholding operation, as shown in Figure 5. This segments
the mask in background (black) and object (white), the goal
being that the object is the red eye.

IS&T's 2001 PICS Conference Proceedings

285

Figure 5. Mask binarization.

The important question in this step is how to determine
the threshold level. Several automatic thresholding methods
have been evaluated, such as the Mean value, Histogram
peaks, Iterative selection, Pun, and Fuzzy methods, desc-
ribed by Parker.10 These methods were not found to yield
satisfactory results. Therefore we chose to simply use static
thresholding, with a threshold level empirically set to 175.

Mask Adjustment and Fuzzification
Typically, at this point, the mask does not correctly

identify the location of the red eye. The third step of our
algorithm is therefore a very important one, in which the
binary mask is adjusted to fit more closely the actual
location of the red eye (Figure 6). A combination of several
image processing techniques are used.

The morphological operations opening and closing are
used to remove unwanted “noise” pixels, and to fill “holes,”
respectively.

A “blob analysis” technique is used to group the pixels
of the mask into objects, and the object most likely to be a
red eye artifact is selected, based on features such as size
and shape.

Some degree of circularity may be imposed on the
mask, for example by replacing the object by a circular disc.

Finally the mask is smoothed, or “fuzzified,” to achieve
a “softer” correction that appears to be more natural. In this
operation the mask is converted into an 8-bit representation.

Figure 6. Mask adjustment and fuzzification.

Image Correction
The last step of our algorithm is to apply the actual

correction to the areas of the ROI where the mask value is
nonzero, as illustrated by Figure 7.

Figure 7. Image correction.

The first step of this correction is to identify the target
color for the corrected red eye using the CIELAB color
space as follows. The color components a* and b* determi-
ning the hue and saturation are set to zero, that is, shades of
gray. The lightness component L* is then determined by
“stretching” out the lightness of the original image such that
its minimum value becomes black (or almost black) and its
maximum value remains constant. This calculation can be
represented by Eq. (4).

()

0*

0*

*min**
*min*max

*max

←
←

−←
−

b

a

LLL
LL

L

(4)

Finally, the new color for each pixel is determined as a
combination of the original color and the target color, by
weighting with the fuzzy mask values. Denoting the target
CIELAB values of Eq. (4) as t(i,j), the correction is
represented by the following equation:

() () ()()i,jmi,ji,jmji(i,j) −+← 1),(iti (5)

Note that the calculation of Eq. (5) is carried out in
CIELAB space, therefore, to complete the correction, the
pixels need to be converted back to an RGB representation.

Experimental Results and Discussion

We have applied the proposed algorithm to a series of
images containing red eyes, some of which are shown in
Color Plate 1. In order to benchmark the performance, we
also applied the red eye removal function of Adobe
PhotoDeluxe 1.0 Business Edition to the same images.

Our proposed algorithm was found to give visually
good results. It is judged to be very competitive in terms of
the resulting image quality. Examining the results of Color
Plate 1more closely, we make the following observations.

IS&T's 2001 PICS Conference Proceedings

286

Original Corrected PhotoDeluxe Original Corrected PhotoDeluxe

Color Plate 1: Experimental results of the proposed Red Eye Removal algorithm, compared to those obtained using Adobe PhotoDeluxe.

• In several cases, PhotoDeluxe identifies two red eyes,
even if there is only one.

• Our method gives less edge artifacts around the
corrected area.

• Both algorithms fail on some images.

To further optimize the results, some fine-tuning of the
different parameters of the algorithm could be done.

Conclusions and Perspectives

A solution to the problem of removing “red eyes” from
digital photographs was proposed. An innovative combina-
tion of image processing algorithms permits a robust deter-
mination of which pixels need to be modified, and how to
modify them. The idea of using the CIELAB color space to
specify the corrections enables to ensure that the specular
reflection of the flash, which is often a very important
feature of the image, remains at the same level of intensity
in the corrected image, while the unwanted reddish hues are
removed.

To go one step further in automating this process, it
would be possible to combine the presented method with
known techniques of automatic face detection in digital
images, such as for example those proposed in the
references 11-13. This combination would result in a
completely automatic removal of red eyes, and could be of
great potential, especially in the quickly growing market of
amateur digital photography.

References

1. K. K. Y. Au, K. N. Plataniotis, and A. N. Venetsanopoulos,
Red-eye Removal by Colour Image Processing, Proceedings
of the 2nd World Congress of Nonlinear Analysts, Athens,
Greece, July 10-17, 1996.

2. For more information about Conexant’s imaging software,
refer to http://www.conexant.com or send an email to
rdc.info@conexant.com.

3. Note that most of the figures in this paper are best appreciated
in color. Consult IS&T’s digital library at
http://www.imaging.org, or the author’s web page at
http://color.hardeberg.com in order to receive an electronic
color version of this manuscript.

4. J. Zeltsman, Zeltsman Approach to Formal Classic
Portraiture, http://www.zuga.net/zuga/contributors/zeltsman/
body.htm

5. International Commission on Illumination, Colorimetry, CIE
Publications 15.2, Vienna, Austria, 1986.

6. E, J, Giorgianni and T. E. Madden, Digital Color Manag-
ement – Encoding Solutions, Addison-Wesley, 1998

7. R. W. G. Hunt, The Reproduction of Colour, Fountain Press,
5th Ed., 1995

8. G. Starkweather. Colorspace interchange using sRGB, 1998.
This White Paper and other information about the sRGB
colorspace is available at http://www.srgb.com.

9. J. Y. Hardeberg, Desktop scanning to sRGB, In Device
Independent Color, Color Hardcopy and Graphic Arts V,
Proc. SPIE 3963, pp. 47-57, 2000

10. J. R. Parker, Algorithms for Image Processing and Computer
Vision, Wiley, 1997

11. H. A. Rowley, Shumeet Baluja, and Takeo Kanade, Neural
Network-Based Face Detection, IEEE Transactions on Pattern
Analysis and Machine Intelligence, volume 20, number 1,
pages 23-38, January 1998.

12. H. A. Rowley, Neural Network-Based Face Detection, Ph.D.
dissertation, Carnegie Mellon University, CMU-CS-99-117,
May 1999

13. K.-K. Sung and T. Poggio, Example-Based Learning for
View-Based Human Face Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20, No. 1,
January 1998

Biography

Jon Y. Hardeberg received his sivilingeniør (M.Sc.) degree
in signal processing from the Norwegian Institute of Tech-
nology (Trondheim, Norway) in 1995. He received his
Ph.D. from the Ecole Nationale Supérieure des Télé-
communications (Paris, France) in February 1999. His
Ph.D. research concerned color image acquisition and re-
production, with applications in facsimile, fine-art paintings,
and multi-spectral imaging. He is currently employed with
Conexant Systems, Inc., where he designs, implements, and
evaluates color imaging system solutions for multifunction
peripherals and other imaging devices. His professional
memberships include if IS&T, SPIE, and ISCC.

IS&T's 2001 PICS Conference Proceedings

287

